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Abstract. We analyse a specific two-dimensional mixed-spin Heisenberg model with exchange
anisotropy, by means of high-temperature expansions and Monte Carlo simulations. The goal
is to describe the magnetic properties of the compound(NBu4)2Mn2[Cu(opba)]3·6DMSO·H2O
which exhibits a ferromagnetic transition atTc = 15 K. Extrapolating our analysis on the basis
of renormalization group arguments, we find that this transition may result from a very-weak-
anisotropy effect.

1. Introduction

In the last few years there has been increasing interest in magnetic systems of low
dimensionality. For example, the rapidly developing field of molecular magnetism [1]
deals mainly with quasi-one-dimensional and quasi-two-dimensional compounds. Although
the basic theory of their magnetic properties has been known for a long time [2], it is
now necessary to apply it in the various contexts corresponding to these complex molecular
architectures.

Figure 1. An elementary cell of the hexagonal lattice, with the Cu ions (closed circles) at the
mid-points of the links and the Mn ions (open circles) at the vertices.

The compound (NBu4)2Mn2[Cu(opba)]3·6DMSO·H2O, first synthesized by Stumpfet al
[3], exhibits a transition atTc = 15 K towards a ferromagnetically ordered state. The
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structure of this material can be schematically described as a superposition of negatively
charged layers of hexagonal lattices with the MnII ions (spin 5/2) occupying the vertices and
the CuII ions (spin 1/2) at the mid-points of the links (see figure 1). The tetrabutylammonium
cations, NBu+4 , are located between the layers. Other compounds of the same kind have
been synthesized, differing in the nature of the cations between the layers [4]. When these
cations are small (Na+, K+ and tetramethylammonium), a long-range antiferromagnetic
ordering in observed in zero field. An external field of the order of 0.15 kOe is sufficient to
overcome the very weak interlayer interactions and to lead to a ferromagnetic-like state. The
compounds then behave as metamagnets. When the cations are larger (tetraethylammonium
and beyond), a ferromagnetic ordering occurs at a critical temperatureTc. The value of this
critical temperature first remains constant and equal to 15 K, then decreases very smoothly
as the cation size increases. In other respects, replacing MnII by a more anisotropic spin
carrier such as CoII results in a significant increase ofTc. These results suggest that both
interlayer interactions and spin anisotropy are involved in the mechanism of long-range
ordering. The role of the spin anisotropy in the magnetic properties of two-dimensional
compounds is much less well documented than the three-dimensional effects, and the goal
of this paper is to address this problem.

In the layer of (NBu4)2Mn2[Cu(opba)]3·6DMSO·H2O, the nearest-neighbour MnII and
CuII ions interact through an antiferromagnetic coupling. The interlayer interaction in all
cases is very small as compared to the intralayer one, so, to a good approximation, the
spin system can be considered two dimensional. In a previous paper [5], we showed that
such a simple description, in which the spin-5/2 MnII ions are approximated by classical
ones, gives a good account of the magnetic and thermal properties of the paramagnetic
phase of the compound. However, since the isotropic O(3) model is critical only at zero
temperature [6], we must include a symmetry-breaking mechanism in order to explain the
phase transition atTc = 15 K. We attribute this symmetry breaking to the presence of spin
anisotropy.

Since no single crystal of the Cu–Mn compound has been obtained so far, a direct
measurement of the orientation of the anisotropy is not possible. However, the existence
of a spontaneous magnetization belowTc is the signal of an axial anisotropy and of an
Ising–like transition. An in-plane anisotropy would have driven the system to become one
described by a symmetricXY -model, which, in two dimensions, exhibits a Kosterlitz–
Thouless transition with no ordered phase [7].

The aim of this paper is to investigate the effect of a small axial anisotropy in the simple
model described above.

For weak anisotropy, the critical properties of the model are dominated by the crossover
between theT = 0 critical point of the 2D Heisenberg model and the Ising one atTc. This
effect has been widely analysed in the framework of the purely classical Heisenberg model
[8–13]. In particular, renormalization group analysis [11] leads to the following result: if
λ is the anisotropy parameter (λ = 0 corresponds to the isotropic case), the Ising critical
temperature decreases to zero as

Tc(λ) ≈ 1

|ln λ| for λ→ 0. (1)

Furthermore, the zero-field susceptibility satisfies a scaling law

χ(λ, T ) = χ(0, T )8(λe4π/T ) (2)

where the function8(x) ≈ |x − xc|−7/4 for x ≈ xc = λe4π/Tc . This equation gives
additional information on the Ising critical region. Let us define the width of this region,
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δ, by the expression

1− δ 6 T

Tc
6 1+ δ H⇒ χ(λ, T )� χ(λ = 0, T ).

From equation (2) we getδ ≈ 1/|ln λ| when λ → 0. Therefore in the weak-anisotropy
limit we expect the Ising critical region to become very narrow and quite close toT = 0.
Clearly, this makes experimental investigation difficult.

On the basis of universality, we transpose these renormalization group results to our
mixed-spin system. Since we expect the anisotropy to be very small, we need to develop
methods specifically designed to handle this crossover effect. In section 2 we present our
techniques for high-temperature expansions on the one hand and Monte Carlo simulations
on the other hand. In section 3 we analyse our results and, from a comparison with the
experimental data, we determine the value of the anisotropy for the Cu–Mn compound.
Conclusions are drawn in the last section.

2. The model

We denote byS(Mn)
j the spin-5/2 operator associated with the Mn ion at sitej , and by

S(Cu)
i the spin-1/2 operator corresponding to the Cu ion at sitei in the middle of a link of

the honeycomb lattice. The antiferromagnetic interaction is represented by the Heisenberg
Hamiltonian

H = J
∑
〈i,j〉
(S(Cu)

i · S(Mn)
j + λSz(Cu)

i S
z(Mn)
j )−

( NS∑
j=1

g1µBS
(Mn)
j +

NL∑
i=1

g2µBS
(Cu)
i

)
·H (3)

where J is positive, λ (>0) is the anisotropy parameter,H is the external magnetic
field, 〈i, j〉 stands for a pair of nearest-neighbour spins,NS is the number of sites and
NL is the number of links on the honeycomb lattice (NL = (3/2)NS). The spin-5/2
operator can be approximated by aclassical spin Ss where s is a unit classical vector
and S = √(5/2)(5/2+ 1), whereas the spin-1/2 operators are expressed in terms of the
Pauli matrices,S(Cu) = 1

2σ. Since the quantum spin sites are not directly coupled to each
other, one can trace out the quantum spin dependence to get a completely classical partition
function:

Z(T ,H) =
∫ ( NS∏

i=1

d�i

){∏
〈ij〉

2 cosh

∣∣∣∣∣∣∣∣Wij + 1

2
βg2µBH

∣∣∣∣∣∣∣∣
}

exp

(
βg1µBSH ·

NS∑
i=1

si

)
(4)

where we have defined

Wij = −1

2
βJS(si + sj + λ(szi + szj )êz) (5)

and||X|| stands for the length of the vectorX. The indicesi andj now label theclassical
spins located at the vertices of the honeycomb lattice.

By choosing the orientation of the magnetic field parallel to the anisotropy axis, or
orthogonal to it (along thex-axis), we defineZµ(T ,H) ≡ Z(T ,H êµ) with µ = x or z, as
follows:

Zµ(T ,H) =
∫ ( NS∏

i=1

d�i

){∏
〈ij〉

2 cosh(Kφµ〈ij〉)

}
exp

(
βg1µBSH

NS∑
i=1

s
µ

i

)
µ = x or z

(6)
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with K = 1
2βJS and

φ
µ

〈ij〉 =
∣∣∣∣∣∣∣∣si + sj + λ(szi + szj )êz − g2µB

JS
H êµ

∣∣∣∣∣∣∣∣.
We shall be interested in the standard observables: the specific heat

CV = kBβ2 ∂2

∂β2
lnZ(T , 0)

and the susceptibility along the different directions

χµ= kBT

V

∂2

∂H 2
lnZ

µ

∣∣∣∣
H=0

and also the total susceptibility

χ = 1

3
χz + 2

3
χx

which is measured experimentally.

3. The method of analysis

3.1. The high-temperature expansion

We have performed the expansion of lnZµ in power series inK up to the 19th order and
to the second order inH for computing the magnetic susceptibility. Then we analysed
the series for decreasing values of the anisotropy parameter. The complexity of the
nearest-neighbour interaction (equation (6)) prevents one from using the standard techniques
[8, 14, 15].

The diagrammatic expansion is generated by replacing in equation (6) each cosh(Kφ
µ

〈ij〉)
term by 1+ 9µ

〈ij〉 where the function9µ

〈ij〉 results from the expansion of the hyperbolic
cosine in a power series inK to the given maximal order and ofH to second order. To
each function9µ

〈ij〉 appearing in the product over the nearest-neighbour pairs in equation (6)
is associated one link of a graphG. Hence, only single-line graphs will appear; moreover,
since the contribution of each link starts asK2, a graph withn links will contribute at least
to the orderK2n. We have performed this expansion on our hexagonal lattice up to nine-line
diagrams, leading to a maximal order† of K19.

The powerful star graph expansion technique [15] cannot be used here since, due to
the presence of the anisotropy term, the partition function of articulated graphs does not
factorize. Our procedure is based on the standard connected graph expansion [15] for the
normalized partition functioñZµ = Zµ(T ,H)/Zµ(T ,H)|J=0, namely

ln Z̃µ(T ,H) =
∑
{G}

C(G)ω(G)

where {G} is the set of all connected graphs to a given order,C(G) are the embedding
constants of the graphG, andω(G) is its weight. The weightsω(G) are constructed through
the recursive technique:

ln Z̃µ(G) =
∑
{g}
ω(g)

where{g} is the set of all subgraphs ofG.

† Odd terms appears through the magnetic field dependence of the exponential kernel of equation (6).
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The construction of the graphs and the counting of their embedding numbers have been
automated in a Maple V program. We have developed a recursive algorithm based on the
standard technique of reference [16], which is sufficiently efficient for the small number of
graphs involved here†.

The main difficulty of the method resides in the computation of lnZ̃µ(G), which is
given by

ln Z̃µ(G) =
∫ (∏

i∈G
d�i

)(∏
`∈G

9
µ

`

)
exp

(
βg1µBSH

∑
i∈G

s
µ

i

)
(7)

where{`} and {i} are respectively the set of links and the set of vertices belonging to the
graphG. We proceed as follows.

(a) By using the spherical harmonic basis and the reduction formula [15, 17, 18], each
function9µ

〈ij〉 can be expressed as

9
µ

〈ij〉 =
∑

l1m1l2m2

3
l2m2
l1m1
Yl1m1(�i)Yl2m2(�j )

where3l2m2
l1m1

is a matrix built up recursively of elements which are power series inK and
in H .

(b) The exponential term in equation (7) is expanded to second order inH, and the spin
dependence expressed in terms of the spherical harmonics.

(c) The integral is then computed, contracting the products of spherical harmonics
by means of the reduction formula through the Clebsch–Gordan algebra [18], and then
integrating over the residual angular variables.

All of these steps have been performed algebraically by means of a Maple V program.
We obtain a series in powers ofK of which the coefficients are polynomials inλ and
in g1 and g2. As an illustration of our results, we give in table 1 the coefficients‡ of the
development ofχz to the zeroth and first order inλ.

We have verified that the weightω of each articulated graph is proportional toλ. Thus,
for λ = 0 we recover the property of the star graph expansion of the isotropic model. We
check that, in this case, all of our series coincide algebraically with the ones obtained in
reference [5] by completely different methods.

The Pad́e extrapolation technique [19] is used to analyse the series of the various
observables, normalized to their isotropic counterpart in order to enhance the effect of
the anisotropy. More explicitly, we predict that atTC(λ) the heat capacity diverges log-
arithmically and the axial susceptibility diverges with the Ising exponent 7/4.

For our system [5], the renormalization group result of equation (2) becomes for the
axial susceptibilityχz

χz(λ,K)

χz(0,K)
= 8(λe(2π/

√
3)K) with K = 1

2
βJS (8)

where the function8(x) ≈ |x − xc|−7/4 for x ≈ xc = λe(2π/
√

3)Kc . For small λ, the
singularity is located at large values ofK, far away from the perturbative region. We
analysed the function(χz(λ,K)/χz(0,K))4/7 in terms of the variablev = 1− e−αK, small
at high temperature but bounded for largeK. According to equation (8), this function is
expected to have a simple pole atv = vc(α) which is found as a zero of the denominator

† There are only 45 independent connected graphs with 9 undirected single links on the honeycomb lattice.
‡ The complete set of coefficients for all of the series can be obtained on request from the authors; e-mail:
meyers@bortibm1.in2p3.fr.
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Table 1. A subset of the coefficients of the high-temperature series for the axial susceptibilityχz
in powers ofK = 1

2βJS up to the 17th order. The coefficient ofKn is a polynomial of degree
n in the anisotropy parameterλ. For each coefficient we only give the constant term and the
term linear inλ (the columns headedλ0 andλ1respectively). The top half of the table contains
the even-power coefficients; for each power ofλ the fraction of the first sub-column must be
multiplied by S2g2

1 and added to the second multiplied byg2
2. For instance, the coefficient of

K2 is 2
9S

2g2
1 + 2

9g
2
2 + λ( 28

45S
2g2

1 + 2
3g

2
2) + O(λ2). The bottom half of the table contains the

odd-power coefficients; the fraction in each column must be multiplied bySg1g2.

λ0 λ1

S2g2
1 g2

2 S2g2
1 g2

2

K0 2

9

1

4
0 0

K2 2

9

2

9

28

45

2

3

K4 0 − 1

15

32

81

6

25

K6 2

225

533

8505

1532

30 375

5282

42 525

K8 − 4

2835
− 5683

127 575

512

14 175
− 1754

25 515

K10 524

893 025

19 912

601 425
− 128 824

9568 125

219 628

2525 985

K12 − 69 464

35 083 125
− 51 038 503

1915 538 625

117 344

526 246 875
− 14 083 390 696

143 665 396 875

K14 4539 614

1149 323 175

6380 434

273 648 375

5687 869 652

430 996 190 625

20 243 410 804

184 712 653 125

K16 − 408 296 024

86 199 238 125
− 87 518 482 699

4396 161 144 375
− 62 768 262 944

4114 054 546 875
− 3168 011 262 218

29 973 825 984 375

λ0 λ1

Sg1g2 Sg1g2

K1 −2

3
−2

3

K3 − 2

27
−166

135

K5 − 8

405
−152

675

K7 2

8505
− 69 758

637 875

K9 − 4

4725

44 524

1913 625

K11 7108

49 116 375
− 316 875 236

11 051 184 375

K13 45 214 696

5746 615 875

11 621 348 744

143 665 396 875

K15 − 2434 334 054

86 199 238 125
−130 568 299 906

587 722 078 125

K17 875 743 046 944

13 987 785 459 375

419 699 964 912 544

887 686 384 921 875



Anisotropy effects in a Heisenberg model 2071

of the Pad́e approximants in the variablev. The parameterα is chosen by minimizing
the dispersion of the poles of the central approximants. The residual dispersion gives an
estimate of the error in the critical temperature obtained by this method. For very low
values ofλ, this method becomes inaccurate, giving large error bars.

The series for the heat capacity and for the in-plane susceptibility have been summed
along analogous lines.

For λ . 10−2 an extension of the series to higher orders is needed to reliably determine
the critical temperature. However, in this regime of very weak anisotropy, once the critical
temperature is known by another method—Monte Carlo simulation for instance—the series
becomes a useful analytic representation of the observables. It will be used to determine
the physical parameters from a comparison with the experimental data.

The results of this analysis will be presented and discussed in the next section together
with the Monte Carlo results.

3.2. The Monte Carlo simulation

We performed a Monte Carlo simulation in order to verify the results of the high-temperature
expansion, and to investigate the regime of very small anisotropy where the perturbative
technique fails. The simulation is based on the effective classical model

−βHeff =
∑
〈ij〉

ln(2 cosh||Wij ||) (9)

whereWij is defined in equation (5). The various observables can be expressed as ensemble
averages with respect to the Boltzmann weight e−βHeff/Z(T , 0). Their expression is a simple
generalization of the definition of equations (6) and (8) of reference [5] in whichWij is
replaced by the new definition of equation (5).

Our goal is to explore the weak-anisotropy regime where the effect of crossover between
the 2D Heisenberg and Ising fixed points is important. As the anisotropy gets smaller, most
of the low-temperature region is dominated by the 2D Heisenberg regime in which the
correlation length remains large due to the essential singularity atT = 0. Therefore, the
usual limitations of the Monte Carlo procedure—critical slowing down and the finite-size
effects—constrain the simulation of these systems rather severely.

In order to overcome the first problem we used a global algorithm. We have adapted
the Wolf algorithm [20] to the case of an anisotropic interaction. The ’Ising’ orientation of
the spins, used to construct the Wolf cluster and which is randomly chosen in the standard
algorithm, is imposed here by the anisotropy. In our procedure, a Monte Carlo update
proceeds in three steps:

(i) construct a first cluster with respect to thez- (anisotropy) axis and flip the corres-
ponding spin components;

(ii) construct another cluster relative to a randomly chosen direction in thex–y plane
and flip the corresponding spin components.

After these two steps, a given spin remains on the cone defined by its initial orientation and
the z-axis. Therefore we proceed to another step:

(iii) change the actual orientation of each spin of the lattice according to a standard
Metropolis algorithm. This operation is repeated twice.

In a typical run we perform 5000 MC steps of thermalization followed by 105 meas-
urements divided into 100 bins of 1000 MC steps for the error analysis. We used the standard
IBM congruent random-number generator drand48. Down to moderately weak anisotropy
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(a)

(b)

Figure 2. The susceptibility multiplied by the temperature, as a function of the reduced coupling
K = 1

2βJS for an anisotropyλ = 0.1. The data points come from the Monte Carlo simulation;
the solid line corresponds to the Padé approximant of the high-temperature expansion (HTE).
(a) The in-plane susceptibility. (b) The axial susceptibility. The closed circles correspond to a
lattice sizeL = 128 and the triangles toL = 256.
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Figure 3. The specific heat as a function ofK. For an anisotropy parameterλ = 0.1: the Monte
Carlo data are represented by the closed circles for a lattice sizeL = 128 and by open triangles
for L = 256. The solid line corresponds to the high-temperature expansion (Padé approximant).
For the isotropic model (λ = 0): the open circles correspond to the Monte Carlo simulation
(L = 64) and the dashed line to the series result.

(λ & 10−2) the decorrelation time remains small—5 to 25 Monte Carlo steps, depending on
the temperature. However, whenλ decreases, the domain of temperature to be investigated
gets closer to zero and the Metropolis part of our Monte Carlo procedures induces larger
decorrelation times. Furthermore, in this region, the correlation length remains large even
outside the Ising critical region, inducing non-negligible finite-size effects. Therefore, we
limited our analysis toλ = 0.001 and to a maximum lattice size ofL = 256 for which
we checked that all of these effects remain negligible†. With this procedure we recover the
results of the zero-anisotropy case [5], and of the strong-anisotropy (classical Ising) limit
with a good accuracy.

4. Results

4.1. The critical temperature

To validate our methods we compare the results obtained by the two procedures. We present
in figure 2 the zero-field susceptibility, orthogonal to the anisotropy axis (χx) and parallel
to it (χz) for the high-temperature series and the Monte Carlo data as a function ofK and
for a moderately small value of the anisotropy parameterλ = 0.1. The agreement between
these two sets of results is very good. These curves clearly show the divergent behaviour
of the axial susceptibility, which will be used to determine the critical temperature in the

† In this case, close to the critical temperature, the decorrelation time is of order 70 MC steps, and thus much
smaller than the width of the bins used in the data analysis.
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(a)

(b)

Figure 4. Analysis of the Ising critical regime. (a) The finite-size critical temperature as a
function of the lattice sizeL: from the maximum of the specific heat (triangles); from the
inflexion point of the axial susceptibility (circles). (b) the axial susceptibility as a function of
|Kc −K| on a log–log scale. The slope of the fitted straight line is 1.74(2), in good agreement
with the expected exact Ising value,γ = 1.75.
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(a)

(b)

Figure 5. The variation of the critical temperature withλ. The series results are represented
by open circles and the Monte Carlo simulation by closed circles. (a) The strong-anisotropy
regime: we plot the inverse of the reduced critical couplingK−1

c = 2kBTC/JS as a function
of the anisotropy parameter. The slope of the linear behaviour expected at largeλ corresponds
to Kc Ising ' 1.46(1). (b) The weak-anisotropy regime: the reduced critical couplingKc as a
function of λ on a logarithmic scale. The solid line corresponds to the renormalization group
behaviour,Kc = −(

√
3/2π) ln λ+ constant. The value of the constant is 2.41(2).
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Monte Carlo simulation. Figure 3 displays the specific heat as a function ofK for the same
anisotropy. Besides the good agreement between the two methods, we observe the clear
critical signal atKc ' 2.21 which emerges from the comparison with the result for the
isotropic model.

The critical temperature is obtained from the Monte Carlo data by localizing the peak in
the specific heat and the inflexion point of the susceptibility as a function of the temperature.
In order to estimate the precision of such a determination, we performed a complete finite-
size scaling analysis of the data atλ = 0.1 to obtain the critical temperature and the
susceptibility exponent. The results are presented in figure 4 where we plottedTc(L),

measured from the two signals, for several lattice sizes (figure 4(a)), and (in figure 4(b))
lnχ as a function of ln|Kc − K|. Figure 4(a) shows a small variation of the finite-system
critical signal, which allows us to estimate the bulk critical temperatureTc from lattices
of size not exceedingL = 128. With this estimate, we determine the exponentγ of the
susceptibility from figure 4(b). The resultγ = 1.74(2) is in very good agreement with the
expected exact Ising valueγ = 1.75. This is a self-consistent indication of the reliability of
the critical temperature measurement. Furthermore, we checked that the Monte Carlo result
falls within the error bar obtained from the high-temperature series analysis.

With this method, we determined the critical coupling

Kc = 1

2

JS

kBTc

as a function of the anisotropy parameter on lattices of sizeL 6 256 down toλ = 0.001. The
results of the two analyses—Monte Carlo and high-temperature expansion—are displayed
in figure 5. Figure 5(a) shows the general trend of the variations ofK−1

c ∝ Tc as a function
of λ, with a decrease to zero forλ → 0, and a linear variation at largeλ. In fact, for
λ→∞, the model coincides with a classical Ising model with couplingKIsing = λK so, in
this limit, K−1

c (λ) ' λK−1
c Ising. From the high-temperature expansion, we get the estimate

Kc Ising ' 1.46(1). The variations for smallλ are presented in figure 5(b) where we plotted
Kc versus lnλ. It appears that the behaviour predicted on the basis of the renormalization
group (equation (1)) is obtained for very small anisotropy. In fact, from figure 5(b) we obtain

Kc =
√

3

2π
|ln λ| + 2.41 λ . 0.001. (10)

Therefore, by extrapolating this behaviour down toλ→ 0, we are able to predict the critical
temperature for very small anisotropy.

4.2. Comparison with the experimental results.

In order to compare with the experimental results, we proceed in two steps.

(i) We get an estimation of the anisotropy parameter from the value ofJ previously
determined in the analysis of the paramagnetic phase [5] and from the experimental critical
temperatureTc = 15 K. We obtainKc ' 4.6 which corresponds toλ ' 0.0004, according
to figure 5(b).

(ii) We perform an adjustment ofJ , g1 and g2 at fixed λ by fitting the experimental
data with a selected Padé approximant. Small variations around the fixedλ-value do not
significantly change the fit.

The results are presented in figure 6—for the whole range of temperature in figure 6(a)
and for the critical region only in figure 6(b). An excellent agreement with the experimental
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(a)

(b)

Figure 6. Fits of the experimental data (closed circles for sample 1, open circles for sample
2) for the total magnetic susceptibility. The solid line corresponds to a Padé approximant of
the high-temperature series with the following parameters:J = 45.5 K, g1 = 2.0, g2 = 2.14,
λ = 0.0005; (a) for the whole temperature range; (b) for the critical region. The difference
between the results for the two samples gives an estimation of the experimental errors in the
critical region.
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data is obtained with the following set of parameters:

J = 45.5 K g1 = 2.0 g2 = 2.11 λ ' 0.0005.

The exponential variation ofλ with respect toTc (equation (10)) induces a rather large
error bar in the determination ofλ; in fact, an error of one degree Kelvin inTc induces a
variation ofλ by a factor of 3. However, the magnetic susceptibility is rather insensitive
to these variations, which only affect the Ising critical region over such a narrow range of
temperature that it is not visible experimentally. Moreover, the high-temperature (T > 50 K)
behaviour is left completely unchanged by such a small perturbation, thus preserving the
good agreement with the isotropic model observed in reference [5].

5. Conclusions

We have determined the spin anisotropy which is present in the Cu–Mn magnetic compound
[3] and which is responsible for a ferromagnetic transition at 15 K. Two methods—high-
temperature expansion and Monte Carlo simulation—are used in a complementary way
in order to extract reliable results for the strong-crossover regime where the effect lies.
Assuming universality and extending the renormalization group results to our situation, we
obtain a very small value for the anisotropy parameter.

The strong behaviourTc(λ) ≈ 1/|ln λ| is responsible for the fact that a very weak
perturbation (λ ' 10−4) produces a sizable effect (Tc ' 15 K). For these quasi-two-
dimensional molecular compounds, involving high-spin magnetic ions, it is inconceivable
that, at such a low level of magnitude, anisotropy is absent. Therefore we should always
expect a ferromagnetic transition at an appreciable critical temperature in these systems.

In this work, we only considered the exchange anisotropy as a source of the O(3)
symmetry breaking. Alternatively, on-site anisotropy could be present, but in the limit of
weak anisotropy under consideration here, on the grounds of universality, we expect the
results to be unchanged. As regards the interlayer interactions which have been neglected
in our approach, it is known [12] that if the ratio of the interlayer coupling to the intralayer
coupling, σ = J⊥/J‖, is small, the transition temperature induced by these three-dimen-
sional effects behaves likeTc ≈ 1/ln|σ |. Therefore, even a very small interplane coupling
may significantly contribute to the measured critical temperature, in competition with the
anisotropy effect. We have seen that increasing the interlayer distance beyond a certain
limit results in a smooth decrease ofTc. Taking into account the interlayer coupling would
require us to introduce an additional effect of crossover between the three-dimensional
model with spatial anisotropy and the two-dimensional one with exchange anisotropy [12].
As a consequence, the contribution of the spin anisotropy to the critical temperature would
be overestimated and our result for the anisotropy parameter would turn out to be an upper
bound.
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